Interfacial Force Microscopy: New Tools for Nanomechanics

The Instrument

J. E. Houston Sandia National Laboratories

Areas of Application

Nanomechanical

Objective

Develop a scanning force-probe technique centered around a mechanically stable and

quantitative force sensor

Approach

Design a self balancing, force-feedback sensor

with differential capacitance displacement

electrostatic

detection and self balancing by

feedback

The Sensor

The common plate of a differential capacitor and torsion-bar suspension

system is defined by a 25 μm trench Bosch® etched into a 100 μm Si(001)

wafer

The ~5 µm capacitor gap is etched into a Pyrex® wafer and the Au/Cr

electrodes are deposited in the gap

These two are then anodically bonded to form the sensor

Advantages

- Quantitative
- Mechanically Stable: measures entire force profile
- Zero Compliance: no energy stored during measurement
- Measure both normal and lateral (friction) forces

Torsion Bars

Common Plate C_1 Differential Capacitor C_2

Sensor

Molecular Level
Adhesion and Friction

Nanoindentation

Modulus Mapping

Glass

Epoxy

One Example

Separating Mechanical & Adhesive Friction

Both tip and substrate functionalized with -CH₃ or -COOH end groups

on SAM films of various lengths

- Data taken of both F_n vs. d and F_n vs. F_n
- Results fit with simple contact-mechanics model (JKR) to obtain quantitative values of mechanical and adhesive components of

JKR Fits: Adhesion, Friction & Nanomechanics

Friction Shear Strength: Mechanical & Bonding

End Groups] -MPa] -MPa] -MPa	Notes
	Total	Mechanical	Bonding	
2xCOOH(10)	6.5	2.2	4.3	Two short films
				Strong inter-film bonds
2xCOOH(15)	3.2	0.8	2.4	Two long films
				Double intra-film bonds
CH3(15)/COOH(15)	1.6	0.8	0.8	Two long films
				Single intra-film bonds
CH3(15)/COOH(10)	1.5	1.1	0.4	One short one long film
				No Chemical bonds
2xCH3(15)	0.8	0.8	0.0	Two long films
				No chemical bonds

Conclusions

- While only as accurate as the contact-mechanics model, these are the <u>first</u> quantitative measurements of the mechanical vs. adhesive origins of molecular-level friction and demonstrate:
- Friction from the adhesive interaction results from breaking bonds under lateral tip motion for <u>both</u> inter and intra-film bonds
- Only the even -COOH combination shows inter-film bonding
- The odd length -COOH terminated SAM is virtually hydrophobic
- The strength of inter- is greater than that for the intra-film bonding
- Because of the strain effect, the "modulus" value varies inversely as length

IFM Instrument Development

Goal

Develop a fully independent, 2D IFM sensor with laser interferometer-based displacement detection

The Princeton IFM Instrument

Instrument Status

- Copyright software under LabView environment (W. L. Smith-Sandia)
- 2D sensor in advanced prototype stage (Patent Pending)
- Hardware available from local vendors
- Currently 14 instruments in use; 6 at Sandia and 8 at various universities

Collaborators

- W. L. Smith, Sandia: Instrument and software development
- B. C. Bunker, Sandia: Bio-system interactions with tailored surfaces
- J. T. Brinker, Sandia: Fabrication and properties of super-hydrophobic surfaces
- L. Minier, Sandia: Interphase properties and aging in energetic materials
- **Prof. X.-Y. Zhu**, U. Minnesota: MEMS-level lubrication; friction, wear and stability
- Prof. K. T. Vanderlick, Princeton University: SAM films; structure, adhesion and friction
- Prof. G. Scoles, Princeton University: SAM films; structure, adhesion and friction
- **Prof. S. T. Picraux**, Arizona State University: Controllable surfaces for bio-systems interactions
- Prof. K. M. Liechti, University of Texas at Austin: Nanomecahnical properties of composite materials
- Prof. R. M. Winter, South Dakota School of Mines: Nanomechanics of interphase materials
- Prof. P. R. Norton, University of Western Ontario: Properties of anti-wear additives